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Abstract. We investigate three-flavour chiral perturbation theory including virtual photons in the limit in
which the strange quark mass is much larger than the external momenta and the up and down quark masses,
andwhere the external fields are those of two-flavour chiral perturbation theory. In particular, wework out the
strange quark mass dependence of the electromagnetic two-flavour low-energy constantsC and ki. We expect
that these relationswill beuseful for amoreprecise determinationof the electromagnetic low-energy constants.
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1 Introduction

Chiral perturbation theory (χPT) [1–3] is the effective
theory of QCD at low energies. It relies on an effect-
ive Lagrangian whose coupling constants are the chiral
low-energy constants (LECs). They are independent of
the light quark masses and encode the influence of the
heavy degrees of freedom that are not contained in the La-
grangian explicitly. For many phenomenological applica-
tions the predictivity of χPT depends on realistic estimates
of these LECs. An up-to-date account of our knowledge
about the LECs can be found in the recent conference re-
ports of Ecker [4] and Bijnens [5].
In this article we are concerned with the electromag-

netic LECs of χPT in the (natural parity) meson sector in-
cluding virtual photons. In the following we abbreviate the
effective theory with three flavours by χPTγ3 [6–8], and ac-
cordingly for two flavours by χPTγ2 [9–11]. Recently, quite
some progress has been achieved estimating the NLO elec-
tromagnetic LECs in χPTγ3 [12–17], while little is known
about the pertinent LECs in χPTγ2 , to the best of our
knowledge. In such a situation the following strategy may
be pursued [18–20]: if one limits the external momenta to
values small compared to the kaon and eta mass and treats
mu andmd as small in comparison toms,

|p2| �M2K mu,md�ms , (1)

then the degrees of freedom of the kaons and the eta
freeze. In this region one may work out relations among
the LECs in χPTγ2 and χPT

γ
3 , which allow one to estimate

the electromagnetic LECs in χPTγ2 through the know-
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ledge of the ones in χPTγ3 . The purpose of the present
article is to systematically provide all relations between
the O

(
e2, e2p2, e4

)
LECs in χPTγ2 and χPT

γ
3 at one-loop

order. The calculation is performed along the lines outlined
in [21–23]. Briefly, the method consists in a non-trivial
matching between the three-flavour versus the two-flavour
generating functional of the effective theory.1

We briefly comment on related work in the literature.
Analogous relations between the two-flavour and the three-
flavour LECs in the strong sector have been provided by
Gasser and Leutwyler in [3]. Recently, we have worked out
the same relations to the next higher order (at two loops)
in the perturbative expansion [23]; see also [25, 26] for ear-
lier contributions to the literature on such relations at two
loops. Finally, analogous work was performed at one-loop
accuracy in the baryonic sector in [27].
The remainder of the article is organised as follows.

After settling on the notation in Sect. 2, we give some de-
tails on the derivation of the matching relations in Sect. 3.
Section 4 contains a numerical analysis of the matching re-
lations, leading to estimates of the electromagnetic NLO
LECs in χPTγ2 .

2 Including virtual photons in χPT

A general procedure to construct the effective theory with
photons in the mesonic sector for three light flavours

1 After we had performed the calculation of these matching
relations, we were informed by Marc Knecht that the relations
at O(e2) and O(e2p2) had also been derived by Nehme [24]. We
agree with the relations given there.
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(χPTγ3 ) has been proposed by Urech [6]. The two-flavour
effective theory χPTγ2 may be constructed along the same
lines [9–11]. We choose our notation following the nomen-
clature of the LECs introduced by Urech [6] for χPTγ3 , and
by Knecht and Urech [9] for χPTγ2 .
The basic building block of the chiral Lagrangian is the

Goldstone matrix field u(φ) which transforms under a chi-
ral rotation g = (gL, gR) ∈ SU(n)×SU(n) as

u(φ)
g
−→ u(φ′) = gRu(φ)h(g, φ)

−1 = h(g, φ)u(φ)g−1L ,

where h is called the compensator field. The mesonic La-
grangian then consists of operators X that either trans-
form as

X
g
−→ h(g, φ)Xh(g, φ)−1 (2)

or remain invariant under chiral transformations. As a re-
sult, (products of) traces of products of chiral operatorsX
are chiral invariant. The elementary building blocks of the
effective Lagrangian that have the transformation prop-
erty of (2) and furthermore contain the external vector
vµ, axial aµ (both traceless), scalar s, and pseudoscalar p
sources are given by

uµ = i
[
u†(∂µ− irµ)u−u(∂µ− ilµ)u

†
]
,

χ± = u
†χu†±uχ†u , (3)

where

rµ = vµ+aµ+QRAµ , lµ = vµ−aµ+QLAµ ,

χ= 2B0(s+ ip) , (4)

withAµ the photon field andQL,R spurion sources with the
transformation properties

QR
g
−→ gRQRg

†
R , QL

g
−→ gLQLg

†
L .

They are also contained in the building blocks

qR = u
†QRu , qL = uQLu

† , (5)

which transform according to (2). Below, we will consider
constant sources QR = QL = Q only, and of phenomeno-
logical interest are the cases with two (Q=Q2), as well as
three light flavours (Q=Q3),

Q2 =
e

3
diag(2,−1) , Q3 =

e

3
diag(2,−1,−1) . (6)

Note thatQ3 is traceless, whileQ2 is not. For three flavours
the leading order Lagrangian reads in Euclidean space-
time,

L(3)2 =
F 20
4
〈u ·u−χ+〉−C0 〈qLqR〉

+
1

4
FµνFµν +

1

2
(∂µAµ)

2 , (7)

where the superscript (3) labels the number of flavours.
Further, u ·u ≡ uµuµ, Fµν = ∂µAν −∂νAµ is the field
strength of the photon, and the gauge fixing term is put in
the Feynman gauge, as is customary in χPTγ2,3. The sym-

bol 〈·〉 denotes the trace of the flavour matrix enclosed. For
two flavours the leading order Lagrangian amounts to hav-
ing the same form as for three flavours, with the difference
of restricting the u fields to elements of SU(2), and similar
for the sources. Furthermore, the LECs F0, B0, and C0 are
to be replaced with F , B, and C, respectively. To distin-
guish two- from three-flavour fields, we decorate the former
ones with a superscript π. In summary,

L(2)2 =
F 2

4

〈
uπ ·uπ−χπ+

〉
−C 〈qπLq

π
R〉

+
1

4
FπµνF

π
µν +

1

2
(∂µA

π
µ)
2 . (8)

For the NLO Lagrangian L4 we need the following addi-
tional building blocks:

f±µν = ulµνu
†±u†rµνu ,

χ±µ =∇µχ±−
i

2
{χ∓, uµ} ,

qRµ =∇µqR−
i

2
[uµ, qR] ,

qLµ =∇µqL+
i

2
[uµ, qL] , (9)

where we have introduced the field strengths

yµν = ∂µyν −∂νyµ− i [yµ, yν ] , y ∈ {r, l} ,

and the covariant derivative ∇µ in terms of the chiral con-
nection Γµ,

∇µX = ∂µX+[Γµ, X] ,

Γµ =
1

2

[
u†(∂µ− irµ)u+u(∂µ− ilµ)u

†
]
.

It is worth noting that f+µν for two flavours is not
traceless, since the charge matrix Q2 is not. To be in

Table 1. Basis of the strong operators at order p4 in Euclidean
metric for two (xj) and for three flavours (Xj)

j xj Xj

1 − 14 〈u
π ·uπ〉2 −〈u ·u〉2

2 − 14
〈
uπµu

π
ν

〉2
−〈uµuν〉

2

3 − 116
〈
χπ+
〉2

−
〈
(u ·u)2

〉

4 i
4

〈
uπµχ

π
−µ
〉

〈u ·u〉 〈χ+〉

5 1
2

〈
fπ−
2
〉

〈u ·uχ+〉

6 − i4
〈
fπ+µν [u

π
µ , u

π
ν ]
〉

−〈χ+〉
2

7 1
16

〈
χπ−
〉2

−〈χ−〉
2

8 − 18
(
detχπ++detχ

π
−

)
− 12

〈
χ2++χ

2
−

〉

9
〈
f̃π 2+ +f

π
−
2
〉

i
2 〈f+µν [uµ , uν ]〉

10 − 116

〈
χπ+
2−χπ−

2
〉

− 14

〈
f2+−f

2
−

〉

11 − 14
〈
fπ+µν

〉2
− 12

〈
f2++f

2
−

〉

12 − 14

〈
χ2+−χ

2
−

〉
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Table 2. Basis of the electromagnetic operators at order e2p2 and e4 in Euclidean
metric for two (wj) and for three flavours (Wj). The abbreviation qA ·qA = qAµqAµ for
A ∈ {R,L} is adopted

j wj Wj

1 1
2 〈u

π ·uπ〉
〈
qπR
2+ qπL

2
〉

1
2 〈u ·u〉

〈
q2R+ q

2
L

〉

2 〈uπ ·uπ〉 〈qπRq
π
L〉 〈u ·u〉 〈qRqL〉

3 −
〈
uπµq

π
R

〉2
−
〈
uπµq

π
L

〉2
−〈uµqR〉

2−〈uµqL〉
2

4
〈
uπµq

π
R

〉 〈
uπµq

π
L

〉
〈uµqR〉 〈uµqL〉

5 − 12
〈
χπ+
〉 〈
qπR
2+ qπL

2
〉 〈

u ·u
(
q2R+ q

2
L

)〉

6 −
〈
χπ+
〉
〈qπRq

π
L〉 〈u ·u {qR, qL}〉

7 − 12
〈
χπ+ (q

π
R+ q

π
L)
〉
〈qπR+ q

π
L〉 − 12 〈χ+〉

〈
q2R+ q

2
L

〉

8 −
〈
χπ− [q

π
R, q

π
L ]
〉

−〈χ+〉 〈qRqL〉

9 i
〈
uπµ

([
qπRµ, q

π
R

]
−
[
qπLµ, q

π
L

])〉
−
〈
χ+

(
q2R+ q

2
L

)〉

10
〈
qπRµq

π
Lµ

〉
−〈χ+ {qR, qL}〉

11 〈qπR · q
π
R+ q

π
L · q

π
L〉 − 〈χ− [qR, qL]〉

12 − 14

〈
qπR
2+ qπL

2
〉2

i
〈
uµ
([
qRµ, qR

]
−
[
qLµ, qL

])〉

13 − 12 〈q
π
Rq
π
L〉
〈
qπR
2+ qπL

2
〉 〈

qRµqLµ
〉

14 −〈qπRq
π
L〉
2 〈qR · qR+ qL · qL〉

15 −〈qRqL〉
2

16 − 12 〈qRqL〉
〈
q2R+ q

2
L

〉

17 − 14

〈
q2R+ q

2
L

〉2

line with the basis operators introduced by Gasser and
Leutwyler [2], it is convenient to introduce in addition the
traceless operator f̃π+µν ,

f̃π+µν = f
π
+µν −

1

2

〈
fπ+µν

〉
. (10)

The NLO LagrangiansL4 then read

L(2)4 =
11∑

j=1

ljxj+F
2
11∑

j=1

kjwj+F
4
14∑

j=12

kjwj , (11)

L(3)4 =
12∑

j=1

LjXj+F
2
0

14∑

j=1

KjWj+F
4
0

17∑

j=15

KjWj .

(12)

In the following, we call the operators xj , Xj and the LECs
lj , Lj strong operators and strong LECs, as these operators
do not vanish when switching off the electromagnetic coup-
ling constant, with the exception of x11. Accordingly, we
denote the operators/LECs wj ,Wj/kj , Kj electromagnetic
operators/LECs. The strong operators xj andXj have been
introduced by Gasser and Leutwyler [2, 3] and, for conve-
nience, we reproduce them here in Table 1. The coefficients
hi andHi of the contact terms – introduced by Gasser and
Leutwyler in [2, 3] – are related to our LECs by

h1−h3 = l8 , h2 = l9 , h1+h3 = l10 ,

H1 = L11 , H2 = L12 . (13)

We are using the set of the NLO electromagnetic opera-
tors from Knecht and Urech [9] for two, and from Urech [6]
for three flavours; see Table 2. We do not consider the
odd-intrinsic parity sector, which accounts for the axial
anomaly; see e.g. [28–31]. For the counting we rely on the
standard χPTγ assignment with e2 ∼ O

(
p2
)
and we make

use of the convention of writing O
(
e4, e2p2, p4

)
as O

(
p4
)
,

and similarly for the Landau symbol at order p6.

3 Integrating out the strange quark

This section is devoted to give some details on the deriva-
tion of the main results presented below in (42). We will
follow the steps outlined in [21, 22].

3.1 Generating functional

We start by considering the generating functional Z of
χPTγ3 [3],

e−Z[v,a,s,p,QL,R] =N

∫
[du][dAµ] e

−
∫
ddxL

(3)
eff , (14)

L
(3)
eff = L

(3)
2 +L

(3)
4 + . . . (15)

It may be evaluated in a low-energy expansion in the num-
ber of loops,

Z = Z0+Z1+ . . . , (16)
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where Z0 (Z1) collects the tree-level (one-loop) contribu-
tions. They are given by

Z0 = S̄2 , (17)

Z1 = S̄4+
1

2
ln
detD

detD0
, (18)

where S̄n denotes the classical action

S̄n =

∫
ddxL(3)n (u

cl, Acl, v, a, s, p,QL,R) , (19)

the Goldstone boson fields ucl and the photon field Aclµ
being evaluated at the solution of the classical equation of
motion (EOM),

∇µu
cl
µ +
i

2
χ̃cl−+2i

C0

F 20

[
qclR, q

cl
L

]
= 0 , (20)

∆Aclµ −
F 20
2

〈
uclµ (q

cl
R− q

cl
L )
〉
= 0 , (21)

where χ̃cl− denotes the traceless part of χ
cl
−. The Green’s

function of the differential operator D [D0] of (18) is the
[free] propagatorG(x, y), [G0(x, y)],

DAC(x)GCB(x, y) = δABδ
(d)(x−y) . (22)

The explicit form ofD was first given by Urech [6]2,

D(x) =−Σ2(x)+Λ(x) , Σµ(x) = ∂
x
µ+Yµ(x) ,

(23)

with3

Yµ =

(
Γ̂ abµ Xaρµ
Xσbµ 0

)
, Λ=

(
σab 1

2γ
aρ

1
2γ
σb ρδσρ

)
,

Γ̂ abµ =−
1

2

〈[
λa, λb

]
Γµ
〉
,

Xaρµ =−X
ρa
µ =−

F0

4
δρµ 〈λ

a(qR− qL)〉 ,

σab =
1

8

〈
[λa, uµ]

[
λb, uµ

]〉
+
1

8

〈{
λa, λb

}
χ+
〉

−
C0

4F 20

〈(
[λa, qR+ qL]

[
λb, qR+ qL

]

− [λa, qR− qL]
[
λb, qR− qL

])〉

−
F 20
4
〈λa(qR− qL)〉

〈
λb(qR− qL)

〉
,

γaµ =
F0

2
〈λa {∇µ(qR− qL)+ i [uµ, qR+ qL]}〉 ,

ρ=
3

8
F 20
〈
(qR− qL)

2
〉
. (24)

2 Capital flavour indices A,B,C, . . . run from 1 to 12, lower
case flavour indices from 1 to 8; they span the meson flavour
space. Greek indices ρ, σ, . . . run from 1 to 4 for the photon
field components. The symbols λa stand for the Gell-Mann
matrices.
3 For easy reading, we will drop from now on the label cl for
the fields that satisfy the EOM.

The generating functional for two flavours z is defined
analogously to the one with three flavours. For later pur-
poses we explicitly introduce its low-energy expansion up
to one loop,

z = s̄2+ s̄4+
1

2
ln
det d

det d 0
+ . . . , (25)

where s̄2,4 and the operator d are the two-flavour equiva-
lent of (19) and (23), and the ellipsis stands for two-loop
corrections and higher. For a state-of-the-art evaluation of
the two-flavour functional and more details we refer the
reader to Schweizer [32].

3.2 Matching

We now impose the following constraints on the three-
flavour functional:

i) the external sources of χPTγ3 are restricted to the two-
flavour subspace. The generating functionals shall de-
pend on the same external sources;

ii) mu,d�ms; since the LECs of χPT
γ
2,3 are independent

of mu,d, we will work in the chiral limit for the up and
down quark masses, i.e.mu,d = 0, for simplicity;

iii) external momenta are restricted to values below the
threshold of the massive fields, |p2| �M2K .

We will refer to the limit that satisfies i), ii) and iii)
as the two-flavour limit of the three-flavour theory. In
this limit the three-flavour functional reduces to the two-
flavour functional, i.e. both theories yield the same Green’s
functions in the low-energy region,

Z = z , (26)

provided the LECs of both theories are accordingly
matched. In the following, we will solve this equation for
the LECs. Both sides receive non-local contributions that
are associated to the propagation of massless pions and
photons. Once the matching is fully worked out, these con-
tributions cancel each other. At order p4, this has been
discussed in detail by Nyffeler and Schenk [21] and further
details will also be given elsewhere [33]. To find the rela-
tions among the LECs it suffices therefore to work out the
local parts of the generating functionals. At order p4 we
have in the two-flavour limit

S̄2+ S̄4+
1

2
ln
detD

detD0

∣
∣
∣
local
= s̄2+ s̄4 . (27)

The l.h.s. of (27) is now being worked out. We start with
the tree-level contributions and proceed with the one-loop
corrections.

3.2.1 Tree level: solution of the EOM in the two-flavour
limit

In view of (17) and (18) we need to solve the EOM in
the two-flavour limit. Due to the absence of strangeness
containing external sources [restriction i)] as well as
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strangeness conservation, the following ansatz for the
Goldstone boson fields will turn out to be fruitful:

u= uπe
i
2F0
ηλ8 , (28)

where in uπ only the pions contribute non-trivially. Below,
we will frequently identify without further notice 3×3 ma-
trices that have only non-vanishing elements in their up-
per left 2×2 block with the 2×2 matrices from the two-
flavour theory. Inserting the ansatz (28) into the building
blocks (3) yields

uµ = u
π
µ−

1

F0
λ8∂µη ,

qL,R = q
π
L,R− e33

〈
qπL,R
〉
,

χ± =
B0

B
χπ± cosα− i

B0

B
χπ∓ sinα

+4B0mse33

{
cos 2α (+) ,

i sin 2α (−) ,
(29)

α= η/(
√
3F0) , e33 = diag(0, 0, 1) . (30)

And similar for the building blocks of (9),

f+µν = f
π
+µν − e33

〈
fπ+µν

〉
, f−µν = f

π
−µν ,

qAµ = q
π
Aµ , A ∈ {R,L} . (31)

Next, we write down the EOM of the η field,

(
∆−M2η

)
η =

F0

4
√
3

[
B0

B

〈
χπ+
〉
sinα+ i

B0

B

〈
χπ−
〉
cosα

+8B0ms sin 2α]−M
2
ηη , (32)

where M2η =
4
3B0ms is the eta mass squared at tree level

atmu,d = 0 [similarly we will useM
2
K =B0ms below]. The

EOM may be solved recursively for small α. Note that the
sum of the last two terms in (32) is of order α3. The differ-
ential equation suggests a counting in which every occur-
rence of an η particle counts as order p2 in the two-flavour
limit,

η =−
i
√
3F0

16Bms

〈
χπ−
〉
+O
(
p4
)
. (33)

As a result, we obtain a systematic low-energy expansion of
the SU(3) building blocks.
Before proceeding, we add a remark: to be precise,

the pions of χPTγ3 differ from their two-flavour equiva-
lent, since they satisfy different EOMs. Indeed, in the two-
flavour limit, we find

∇µu
π
µ+
i

2

B0

B
χ̃π− cosα+

1

2

B0

B
χ̃π+ sinα+2i

C0

F 20
[qπR, q

π
L] = 0 ,

(34)

to be compared with the EOM of χPTγ2 ,

∇µu
π
µ+
i

2
χ̃π−+2i

C

F 2
[qπR, q

π
L] = 0 . (35)

However, expanding the trigonometric functions in (34),
one observes that the difference is of order p4; hence, it af-
fects the matching relations only beyond the accuracy at
which we are working. Also at the level of S̄2 – which is the
only one to matter for the EOM – the LECs of both theo-
ries coincide due to the matching condition (26). These are
the reasons why we do not distinguish between the pions of
both theories in this article. However, if one wishes to carry
out the matching beyond one-loop order, this issue requires
a considerably deeper examination [33]. Similar remarks
apply for the photon.
By now, it is straightforward to evaluate the tree-level

diagrams of S̄2,4 in the two-flavour limit using (29), (31)
and (33). To avoid overflowing formulae, for S̄4 we only
show the reduction of the electromagnetic operators explic-
itly. We find

S̄2 =

∫
ddx

[
F 20
4
〈uπ ·uπ〉−

F 20
4
(B0/B)

〈
χπ+
〉
−C0 〈q

π
Lq
π
R〉

+
1

4
FπµνF

π
µν +

1

2
(∂µA

π
µ)
2+

F 20
8M2K

(B0/B)
2x7

]
+O
(
p6
)
,

S̄4 = F
2
0

∫
ddx

{
−4M2KK8 〈q

π
Lq
π
R〉

+

(
6

5
K1+

1

5
K2+K5

)
w1+(K2+K6)w2+K3w3

+K4w4+

(
6

5
K7+

1

5
K8+

4

5
K9−

1

5
K10

)
w5

+(K8+K10)w6+(K9+K10)w7+K11w8+K12w9

+K13w10+K14w11

+F 20

[(
1

25
K15+

6

25
K16+

36

25
K17

)
w12

+

(
2

5
K15+

6

5
K16

)
w13+K15w14

]}

+ S̄4
∣
∣
strong

+O
(
p6
)
. (36)

3.2.2 Loops: the determinant in the two-flavour limit

The determinant of the differential operator D covers all
one-loop diagrams of the generating functional. Its eval-
uation in terms of an expansion in external fields in the
two-flavour limit may be worked out as follows. To begin
with, we note that the contributions from the massless
(pions and photon) and from the massive fields (kaons and
eta) may be separated [21, 22],

ln detD = lndetD�+lndetDη+lndetDK

+lndet(1−D−1π DπηD
−1
η Dηπ) . (37)

The first determinant ln detD� involves contributions from
pions and photons only; it is a purely non-local object
and for the matching of the LECs needs not to be con-
sidered any further. The operators Dη and DK are re-
lated to heavy particles only: their determinants describe
tadpoles with insertions where only particles of identical
masses run in the loop, either etas or kaons; cf. Fig. 1 (left).
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Fig. 1. (Left:) diagrammatic illustration for a specific con-
tribution to ln detDK in (37). The vertices denote insertions
from external fields, related to the operator D. Only kaons flow
through the loop. The whole determinant consists of a sum of
such diagrams, ordered by an increasing number of insertions,
being equivalent to the low-energy expansion introduced in the
text. (Right:) pion–eta mixing at order p4. In the two-flavour
limit this diagram yields local terms only

Diagrams of this type are efficiently calculated with heat-
kernel methods. It results in an expansion in terms of local
quantities involving an increasing number of derivatives,
which corresponds to an expansion in powers of momenta.
The last determinant on the r.h.s. of (37) is a more com-
plicated object. Since it involves the operator Dπ of the
massless modes, it is not a purely local object. However,
its non-locality in the low-energy expansion only shows up
at order p6 and can therefore be neglected for our analysis.
This is due to the symmetric operatorDπη, which mediates
π–η mixing and is of order p2. At order p4, the operators
D−1π and D−1η may be replaced by their free propagators.
As a result, the diagram of Fig. 1 (right) is the only con-
tribution from the last term in (37) at order p4. And the
low-energy expansion of this diagram yields local terms
only. The photon does not show up in this mixing term,
because the eta is not charged. We find

1

2
ln(detD/ detD0)|local

=

∫
ddx
(
Lη1 loop+L

K
1 loop+L

πη
1 loop

)
+O
(
p6
)
,

(38)
Lη1 loop =

1

24
F1(M

2
η )
[〈
χπ+
〉
+M−2K x7

]
+
1

36
F2(M

2
η )x3 ,

LK1 loop =−
1

4
F1(M

2
K)

[〈
uπµu

π
µ−χ

π
+

〉
−8
C0

F 20
〈qπRq

π
L〉

]

+
1

48
F2(M

2
K)

(
x1+2x2+12x4−2x5−4x6

−12x7+x9+24x10−18x11

+
C0

F 20

[
48

5
w1+12w2+

12

5
w5+12w6+36w7

−6w8+
C0

F 20

(
2496

25
w12+

816

5
w13+48w14

)])
,

Lπη1 loop =−
1

6
F 12 (M

2
η ) (x7+x8−x10) , (39)

where the F ln(m
2) denote loop integrals,

F ln(m
2) =

∫
ddq

(2π)d
1

(m2+ q2)n−l(q2)l
, n > l ≥ 0 ,

Fn(m
2)≡ F 0n(m

2) , (40)

which are well known, cf. e.g. [34]. The renormalisation
is carried out in the MS-scheme, where the LECs ci ∈
{li, ki, Li,Ki} are split into a divergent and a finite part, as
follows:

ci = αiλ+ c
r
i(µ, d) , c

r
i(µ)≡ c

r
i(µ, 4) ,

λ=
µd−4

16π2

{
1

d−4
−
1

2
[ln 4π+Γ ′(1)+1]

}
. (41)

The coefficients αi ∈ {γi, σi, Γi, Σi} are given in [2, 3, 6, 9].
4

3.3 Results

Collecting the results of the tree (36) and one-loop (39) an-
alysis allows us to determine the relationship among the
three- and two-flavour LECs via (27). The results are

C = C0 [1−4µK]+4M
2
KF

2
0K

r
8 ,

kr1 =
6

5
Kr1+

1

5
Kr2+K

r
5−
2

5
Z0νK ,

kr2 =K
r
2+K

r
6−
1

2
Z0νK ,

kr3 =K
r
3 ,

kr4 =K
r
4 ,

kr5 =
6

5
K7+

1

5
Kr8+

4

5
Kr9−

1

5
Kr10−

1

10
Z0νK ,

kr6 =K
r
8+K

r
10−

1

2
Z0νK ,

k7 =K
r
9+K

r
10−

3

2
Z0νK ,

kr8 =K
r
11−2Z0(2L

r
4+L

r
5)+
1

4
Z0νK ,

kr9 =K
r
12 ,

k10 =K13 ,

k11 =K14 ,

kr12 =
1

25
Kr15+

6

25
Kr16+

36

25
Kr17−

104

25
Z20νK ,

kr13 =
2

5
Kr15+

6

5
Kr16−

34

5
Z20νK ,

kr14 =K
r
15−2Z

2
0νK ,

l11 =
3

2
Lr10+3L

r
11+
3

4
νK , (42)

where we introduced the abbreviations

Z0 = C0/F
4
0 , µK =

M2K
32π2F 20

ln
M2K
µ2
,

νK =
1

32π2

(
ln
M2K
µ2
+1

)
. (43)

These relations are the main results of our article and de-
serve a few comments.

– We only display the matching relations for the elec-
tromagnetic LECs as well as the strong LEC l11. The

4 For Σ15,16,17 consult (12) in [10].
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ones for the remaining strong LECs may be estab-
lished along the very same lines and may be found
in [3, 23].
– At first glance it might come as a surprise that strong
three-flavour LECs show up in the matching of the
electromagnetic LECs, cf. kr8. Along the derivation pre-
sented here it is the EOM that links strong and electro-
magnetic operators and needs to be used to project the
operatorsX4 andX5 (in the two-flavour limit) into the
two-flavour basis.
– Briefly, we go back again to (39). We remark that only
the kaon loop contributes non-trivially to the match-
ing of the electromagnetic LECs. Having in mind that
along the method presented here, we had performed the
matching for the strong LECs li at two loops already
before [23, 33], the relations in (42) come at almost no
additional cost. Exactly here lies the beauty of this ap-
proach: once the framework is set, all relations of the
LECs are obtained in one strike at a reasonable amount
of effort.
– One verifies that the dependence on the scale µ of the
left and right hand side of (42) is the same.
– Specific linear combinations for electromagnetic match-
ing relations were presented earlier in [18]. We com-
pletely agree with the relations given there. Some of the
relations were also given in [19, 20]; see [35] for com-
ments on why some of the relations in [19] were given
erroneously.
– The approach that was advocated in [18, 19, 24] relied
on an analysis of physical observables – e.g. the charged
pion mass or ππ-scattering – both in χPTγ3 as well as in
χPTγ2 . The functional relationship among (linear com-
binations of) the LECs emerges then from a comparison
of the two representations in a largems expansion. The
agreement between the results found in the literature
and those presented here based on the generating func-
tional provides a thorough and welcome check on both
calculations.

4 Numerical analysis

The relations derived in (42) are useful to obtain con-
straints on the pertinent LECs. In the strong sector for
instance, already in the early days of χPT Gasser and
Leutwyler made use of such relations to convert informa-
tion about the values of the two-flavour LECs to determine
three-flavour LECs; e.g. an estimate for L2 was obtained
in this way via l2. The formulae here presented may be
used in an analogous fashion: to the best of our knowledge
only estimates for the LECs in χPTγ3 are known [12–17].
The matching relations may thus be inferred to obtain esti-
mates on the values of the two-flavour coupling constants.
Two remarks should be made that are relevant in the nu-
merical determination of the LECs: first, some of the LECs
depend on the gauge [15, 36]. The values inferred below are
evaluated in the Feynman gauge. Second, due to ultravi-
olet divergences generated by photon loops, the splitting
of the Hamiltonian of QCD+γ into a strong and an elec-

tromagnetic piece is ambiguous. This ambiguity must be
reflected also in the effective theory in the LECs [37]. Esti-
mates of their sizes should therefore take this into account.
The authors of [37] have discussed the problem in detail on
the basis of field theoretic models and have come up with
a proposal on how the ambiguity may be addressed sys-
tematically within these models. Still, this delicate issue
has not been investigated in the literature for the χPTγ2,3
LECs yet and is beyond the scope of what we are aiming at
here.
We proceed with the numerical analysis of (42). At the

accuracy we are working, we may identify F0 with the pion
decay constant Fπ = 92.4MeV andM

2
K =B0ms with

B0ms =M
2
K+−M

2
π+/2� (485MeV)

2 . (44)

We further set Z0 = 0.91 (obtained from (42) of [15] with
MV = 0.77GeV, z ≡M2A/M

2
V = 2). For the values of the

three-flavour NLO electromagnetic LECs for Kr1, . . . ,K
r
6

we will stick to [12], and for K7, . . . ,K
r
12 to [15], sum-

marised here in Table 3. The LEC Kr9 remained undeter-
mined in [15], as it yet suffers from a reliable estimate [15].
As a result we will not give a numerical estimate for kr5 and
k7. For the LECsK

r
11 andK

r
12 (from (59) and (61) in [15])

we furthermore set µ0 = 1GeV for the QCD scale, and the
parametersMV and z are as introduced above. The coup-
ling constantsKr14, . . . ,K

r
17 are associated to contact oper-

ators and/or operators at order e4 and are not considered
in this section. Furthermore, Lr4 = 0 and L

r
5 = 1.5×10

−3,
taken from the O

(
p4
)
fit in [38]. All LECs are evaluated at

the scale µ= 0.77GeV, and in the Feynman gauge, ξ = 1.
The results for the electromagnetic two-flavour LECs so
obtained are finally summarised in Table 4. As an illus-
tration we also show in Fig. 2 the strange quark mass de-
pendence of kr1 and k

r
2. We observe that the two-flavour

LECs only show a very moderate strange quark mass de-
pendence in the neighbourhood of the physical point. This
pattern is due to its solely logarithmic strange quark mass
dependence at this order of the matching. Note that the
matching relations only apply over a certain range for the
strange quark mass: the formulae break down for ms→ 0,
as the expansion performed here requires that all exter-

Table 3. Values of electromagnetic
LECs in χPTγ3 in units of 10

−3

at the scale µ=Mρ = 0.77 GeV, in
the Feynman gauge. The values for
Kr1, . . . ,K

r
6 are invoked from [12],

and K7, . . . ,K13 from [15]; see also
the text for further details

Kr1 −2.7 K7 0

Kr2 0.7 Kr8 0

Kr3 2.7 Kr9 –

Kr4 1.4 Kr10 4.0

Kr5 11.6 Kr11 1.3

Kr6 2.8 Kr12 −4.2

K13 4.7
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Fig. 2. Strange quark mass dependence of the electromagnetic two-flavour LECs kr1 (left) and k
r
2 (right) in units of 10

−3 at the
scale µ=Mρ = 0.77 GeV. The physical value of ms corresponds toM

2
K =B0ms ≈ (485MeV)

2

Table 4. Values of electromagnetic low-energy constants in
χPTγ2 in units of 10

−3 at the scale µ =Mρ = 0.77 GeV, in
the Feynman gauge. From general dimensional arguments, one
might attribute an uncertainty of 1/(16π2) ≈ 6.3×10−3 to
each LEC

kr1 8.4 kr6 3.9

kr2 3.4 k7 3.7+Kr9 ·10
3

kr3 2.7 kr8 −1.4

kr4 1.4 kr9 −4.2

kr5 −0.8+4/5Kr9 ·10
3

k10 4.7

nal momenta are much smaller than ms. Remarkably, the
pertinent chiral logarithm becomes dominant numerically
only for very small ms. On the other hand, as one in-
creases the strange quark mass, higher order contribu-
tions in the matching expansion become more dominant
and start to spoil the behaviour of the chiral logarithm.
This was discussed in more detail in [23] for the strong
LECs li.
We consider it difficult to assign reliable errors to the

estimates of the LECs in Table 4. The determinations in
[12, 13, 15] – from which we invoked theKri – are model de-
pendent, for which reliable estimates of uncertainties are
always a delicate affair. Moreover, the scale dependence in
various LECs can be strongly correlated. We shall there-
fore refrain from assigning individual errors to the esti-
mates in Table 4. To be conservative, one might attribute
an uncertainty of 1/(16π2) ≈ 6.3×10−3 to each LEC kri ,
stemming from general dimensional arguments. The size
of this uncertainty compared to the values in Table 4 indi-
cates that the entries of the table are yet only a rough order
of magnitude estimate.
In the near future, a more precise determination of

(some combinations of) electromagnetic LECs may also be
expected from lattice QCD. In this respect we mention two
recent studies that address the electromagnetic splitting of
the pseudoscalar meson masses [39, 40].

5 Conclusions

In summary, we have worked out the strange quark mass
dependence of the two-flavour electromagnetic LECs, C
and ki, at next-to-leading order. The calculation relied on
a non-trivial matching between the three-flavour and the
two-flavour generating functional of χPT including virtual
photons and it amounts to 16 relations among the LECs of
χPTγ2 and χPT

γ
3 .

These relations are useful to obtain constraints and fur-
ther information on the pertinent LECs. As an application
we have used these relations to obtain numerical estimates
for the values of the two-flavour electromagnetic LECs.
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